RASPA3 3.0.13
A molecular simulation code for computing adsorption and diffusion in nanoporous materials
|
RASPA
from which all other units are derived are:Quantity | Symbol | Unit | Value |
---|---|---|---|
Length | \(l\) | Ã…ngstrom | \(10^{-10}\) m |
Temperature | \(T\) | Kelvin | K |
Mass | \(m\) | Atomic mass | \(1.6605402 \times 10^{-27}\) kg |
Time | \(t\) | Pico seconds | \(10^{-12}\) s |
Charge | \(q\) | Atomic charge | \(1.60217733 \times 10^{-19}\) C/particle |
Quantity | Symbol | Units | Conversion value |
---|---|---|---|
Energy | \(U\) | \(J = \text{mass} \times \text{length}^2 / \text{time}^2\) | \(1.66054 \times 10^{-23}\) (= \(10\) J/mol) |
Pressure | \(p\) | \(\text{Pa} = \text{mass} / (\text{length} \times \text{time}^2)\) | \(1.66054 \times 10^7\) |
Diffusion constant | \(D\) | \(D = \text{length}^2 / \text{time}\) | \(1 \times 10^{-8}\) |
Force | \(f\) | \(f = \text{length} / \text{time}^2\) | \(1.66054 \times 10^{-13}\) |
... | ... | ... | ... |
A pressure input of 10 Pascal in the input file is converted to 'internal units' by dividing by \(1.66054 \times 10^7\). In the output, any internal pressure is printed, multiplied by \(1.66054 \times 10^7\). It is not necessary to convert units besides input and output, with a few exceptions.
One of the exceptions is the Coulombic conversion factor: $$\frac{q_i q_j}{4\pi \epsilon_0}=\frac{\text{charge}^2}{4 \pi \times \text{electric constant} \times \text{length} \times \text{energy}} = 138935.4834964017$$ where the electric constant is \(8.8541878176 \times 10^{-12}\) in units of \(\text{C}^2/(\text{N} \cdot \text{m}^2)\). This factor is needed to convert the electrostatic energy to the internal units at every evaluation.
The Boltzmann constant \(k_B\) is: $$k_B = \text{Boltzmann constant}/\text{energy} = 0.8314464919$$ with the Boltzmann constant as \(1.380650324 \times 10^{-23}\) in units of J/K, and \(k_B = 0.8314464919\) in internal units.
C
-convention, i.e. starting from zero.force_field.def
file in the current directory.